If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x-540=0
a = 2; b = 3; c = -540;
Δ = b2-4ac
Δ = 32-4·2·(-540)
Δ = 4329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4329}=\sqrt{9*481}=\sqrt{9}*\sqrt{481}=3\sqrt{481}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{481}}{2*2}=\frac{-3-3\sqrt{481}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{481}}{2*2}=\frac{-3+3\sqrt{481}}{4} $
| 10-5-x=20 | | 11x-59=7x-9-6 | | -1.6-4x=9.2 | | -(6x+(5x+2))=6-(2x+5) | | x=x×2/144 | | 28+5x=13 | | 4(5y–2)=40 | | 9h-12=54-23 | | -19+x=43 | | 8(x+3)+x=9(x-3)+3 | | 8(x+2)+6=8x+5 | | 3x+1=9x-7 | | 8x+26+7x=180 | | 3x+1=9x-7;1 | | 5x+21x+7=0 | | (x-10)=5-2x | | Y^2-2y-144=0 | | (2/x)+2=(3/4x)+(17/8) | | 5x+21x-7=0 | | 5x-15=2+21 | | Px+52=Qx−78 | | 4y-5+4=0 | | (p/4)-(3p/8)=2 | | 1/3x+3=26+6/18-23 | | 2/3(5/8+4x)-5/8=3/8 | | 0.2x-3=2.7x-23 | | 8x+4(-2x-2)=(-4)-4x | | 29=5-2x-2x | | 12/7=12y | | 6x–7=38 | | (t−10)2−16=0 | | 3v/5=30 |